Lipschitz and differentiability properties of quasi-concave and singular normal distribution functions

نویسندگان

  • René Henrion
  • Werner Römisch
چکیده

The paper provides a condition for differentiability as well as an equivalent criterion for Lipschitz continuity of singular normal distributions. Such distributions are of interest, for instance, in stochastic optimization problems with probabilistic constraints, where a comparatively small (nondegenerate-) normally distributed random vector induces a large number of linear inequality constraints (e.g. networks with stochastic demands). The criterion for Lipschitz continuity is established for the class of quasi-concave distributions which the singular normal distribution belongs to.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the differentiability of Lipschitz functions with respect to measures in the Euclidean space

Rademacher theorem states that every Lipschitz function on the Euclidean space is differentiable almost everywhere, where “almost everywhere” refers to the Lebesgue measure. Our main result is an extension of this theorem where the Lebesgue measure is replaced by an arbitrary measure μ. In particular we show that the differentiability properties of Lipschitz functions at μ-almost every point ar...

متن کامل

Essentially Smooth Lipschitz Functions

In this paper we address some of the most fundamental questions regarding the differentiability structure of locally Lipschitz functions defined on separable Banach spaces. For example, we examine the relationship between integrability, D-representability, and strict differentiability. In addition to this, we show that on any separable Banach space there is a significant family of locally Lipsc...

متن کامل

Quasi-Gap and Gap Functions for Non-Smooth Multi-Objective Semi-Infinite Optimization Problems

In this paper‎, ‎we introduce and study some new single-valued gap functions for non-differentiable semi-infinite multiobjective optimization problems with locally Lipschitz data‎. ‎Since one of the fundamental properties of gap function for optimization problems is its abilities in characterizing the solutions of the problem in question‎, ‎then the essential properties of the newly introduced ...

متن کامل

Weak differentiability of solutions to SDEs with semi-monotone drifts

‎In this work we prove Malliavin differentiability for the solution to an SDE with locally Lipschitz and semi-monotone drift‎. ‎To prove this formula‎, ‎we construct a sequence of SDEs with globally Lipschitz drifts and show that the $p$-moments of their Malliavin derivatives are uniformly bounded‎.

متن کامل

Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions

We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact  (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals OR

دوره 177  شماره 

صفحات  -

تاریخ انتشار 2010